COHOMOLOGY & BASE CHANGE II: Recall:

Theorem (Grothenderck): f: X > Y proper of noetherion, Y = SpecA, f concrent on X flot over Y. There exists a fin. complex K of fin.gen. proj. A-modules and isomorphism of functors, HP(X xy SpecB, FOAB) > HP(K°OAB) in cutegory of A-olg.

Base change theorems:

 $g^*(R^pf_*F) \rightarrow R^pf_*(g^{1*}F)$: By adjunction $g^{1*} - 1g_*$ we have id $\rightarrow g_* \circ g_*$ > RPf* --> RPf*gi*gi* (Grotherdeick spectral sequence: (RPf*)0(R9g*)(A) = RP49(f*0g*)(A). MISSING NOTES.

Corollary: $f: X \rightarrow Y$ as in theorem above (don't assume Y affine) and Y is reduced + connected. YP TFAE,

(1) $Y \ni y \mapsto \text{dim}_{k(y)} H^p(Xy, Fy)$ where $Xy = X \times y$ Speckly), $F_y = F \otimes_{G_y} k(y)$, is constant y.

(2) $R^p f_* F$ locally free and $R^p f_* F \otimes_{G_y} k(y) \xrightarrow{\sim} H^p(Xy, Fy)$.

If one of these conditions are suitistized, we also have $R^p f_* F \otimes_{G_y} k(y) \xrightarrow{\sim} H^{p-1}(Xy, Fy)$.

Proof: (2) ⇒ (1) RPf*F=E, is locally free > of constant rank r. Take yey, E⊗ley) = HP(Xy, Fy) around yey, EIV= Cyr IV > dimbey, HP(Xy, Fy) = dimbey, EIV ⊗ley)

Proof: T = SpecA, let us take ye T = T fingen module by Coherence and dimension $Ty \otimes \text{lely} = T$, we take generators $\sigma_1, \dots, \sigma_T \in T$ fifting to the generators of $Ty \otimes \text{lely} = T$, or can be extended on a small neigh. Voly. T = SpecA, let us take ye T = T fingen module by Coherence and T and T is T fingen module by Coherence and T is T and T is T and T is T and T is T and T is T.

Coheroiv = $O \Rightarrow O$ is surjective (up to restricting). Worst to show O - inj., let $\mathcal{L} = ker(O)$.

ty EV. Recall that V=SpecB reduced ⇒ B recluded ring. If y' corresponds to p-prime ideal, ?mp ⊆ (pBp).Bp type SpecB ⇒ mp=0. ⇒ dy 1=0.

Lemma: Y reduced, noeth., affine, $F \xrightarrow{\Phi} \mathcal{L}$ morphism of loc. free coherent shecues on Y. If $\dim(\operatorname{Im}(\Phi\otimes \operatorname{ley}))$ is locally const. $\Rightarrow F = F_1 \oplus F_2$, $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$ with $\Phi = [0 \text{ isom}]$. Proof: $F \xrightarrow{\Phi} \mathcal{L} \longrightarrow \mathcal{L}/\phi(F) \to 0$, we want $\mathcal{L}/\phi(F)$ to be loc. free.

We know $\dim(\operatorname{Im}(\Phi\otimes \operatorname{ley}))$ is locally const. as $-\operatorname{seley}(\Phi)$ is right exact, $\operatorname{Fo-ley}(\Phi) \to \operatorname{L}(\operatorname{seley}(\Phi)) \to \operatorname{L}(\operatorname{pl}(\Phi)) \to \operatorname{L}(\operatorname{pl}(\Phi))$. ⇒ L/O(F) is locally free.

Let $\Gamma(Y,F)=M,\Gamma(Y,Z)=N,M\xrightarrow{\Phi}N\longrightarrow N/\Phi(M)\to O$ and N/ $\Phi(M)$ projective. consider the exact sequence 0 → Ф(M) C>N → N/D(M) → O and N/D(M) is projective = spirs = N= PLMI & NOIM). Also PLMI is projectue.

Thus O-> kerp C>M -> O MI>O also spiris, M = Kerp @OM), N=p(M)@N/OMI. Therse are the sought out decompositions. D

(1) \Rightarrow (2) First pick K° given by the theorem, we can assume Y=SpecA and K° free complex. Let $dP: KP \to KP+1$, $dP^{-1}: KP^{-1} \to ker+dP$). Want to show, $dim(Im(dP\otimes kly))$ is loc. Constant dimery, HP(xy, Fy) = dimkor(dP@ley11 - dim In(dP-10 ley))

= dim (KP& hy)) - dim (Im(dP&hy)) - dim(Im(dP1&ldy)). 2P-1⊕Kp1 — BP#Hp@Kp → BP+1 @KpH, tensoning with &B,

HP[K*BAB] = HP&B = HP(K*) ⊗B HP-1 (K° ØAB) = HP-1 (K°) ØB. RPf. F = HP(X,F)~, to use lemma 1 we want dimeny (RPf*F &-key)) = dimeny (HP(X,F) & key) = dim(HP(K°) ⊗ ky)) = dim(HP(K°⊗ ky)) → use lemma 1. Theorem: (Seesaw Thm): X complete uciety/le i.e XxY-14 closed, Tuciety/le, L line bundle on $X \times T$, $T_1 = \{t \in T : \mathcal{L}_{1 \times x_{1} \in \mathbb{Z}} \text{ truiul on } X \times 1 \in \mathbb{Z}_1 \text{ is closed in } T \text{ also } \exists \text{ line } \text{ bundle } M \text{ on } T_2 \text{ such that } p^*M = \mathcal{L} \text{ where } p : X \times T_1 \to T_1 \text{ .}$ Remork: If we have trivial line bundle MI on complete variety X, (ximi)>0 & ho(ximi)>0, note that x-complete) => Ho(xiox)=1e. and for = take sections of HO(X,MI), SEHO(X,MIT) = DOBS=OFHO(X,Ox) gives on iso Ox=M. Proof: Xx{t? is also complete T = [teT, ho(xxiti, L(xxiti)>0 (n(teT/ho(xxt, LTxxiti)>0) Recall: $y \rightarrow dim_{ky}, HP(Xy, Fy)$ is upper som: $cont \rightarrow t \rightarrow dim H^0(Xx1t1, Z)xx1t1)$ $\Rightarrow T_1$ is closed, consider T_L with reduced scheme structure. We want to use corollary: $\dim_{\text{eyg}}H^0(Xx\{t\},\mathcal{L}_{|Xx|t\}}) = \dim_{\text{eyg}}H^0(Xx|t\},\mathcal{O}_{xx|t\}} = 1$. =) constant => $\mathbb{Z}_{p*}\mathcal{L}$ locally free. (by lemma 1 it is a line bundle). We wont to show, M=p* & i.e p*p* &= & by adjunction, Ip*p* &-> &. Xx It? -> XxT 917 => i*p*p*L -> L|xxit? = (pi)*p*L->L|xxit? Spechy) $\rightarrow \dot{x}$ = (jq)*(p*1) -> L1xxxx ord (jq)*p*2=q*j*p*2 = 9*9xi*2 -> LIXxiti -> 9*9* LIXXHI -> LIXXIti. END OF LECTURE 9